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ABSTRACT 

Evaluation of inequalities of the partial sums defining cumulative grade and recovery prove that 
cumulative grade has an upper bound not dependent on the bank number and cumulative recovery 
possesses an upper bound proportional to the bank number. This explains one observed characteristic of 
cumulative grade versus cumulative recovery curves. 

The existence of such maxima combined with the observed shape of cumulative grade-recovery curves 
leads us to postulate that these curves can be well described by rectangular hyperbolae. Rectangular 
hyperbolae are characterized by asymptotes at right angles to each other. It is proven that this property 
can be used to derive an equation for the cumulative mass flow of the concentrate in terms of the 
asymptotic values of cumulative grade and cumulative recovery. 

Fitting hyperbolae to experimental cumulative grade cumulative recovery plant data then results in 
estimates of the maximum grade, the maximum recovery and a constant which may be taken as a 
performance coefficient of a row. 

Normalization of the cumulative grade and the cumulative recovery by their respective maxima gives rise 
to a graphical representation that can be used to evaluate the operating performance of a row of floatation 
bank cells. The normalization procedure removes the bias that is introduced by inevitable variation in 
mass flow of the feed and variation in feed mineralogy or feed particle size distribution. 

Reduction of the normalized data collapses all cumulative grade-recovery data onto one and the same 
curve. This removes the differences caused by the variation in row performance. The reduced cumulative 
grade-recovery data scatters around a common hyperbola. This can be used to gauge the validity of the 
assumptions made. 

Normalized cumulative mass pull is determined from the fitted values of the maximum recovery and 
maximum grade. This may serve as an alternative performance indicator of the floatation row.

ldefrancesco
Typewritten Text

ldefrancesco
Typewritten Text

ldefrancesco
Typewritten Text
BI0543



 

 

INTRODUCTION 

In flotation based minerals processing the separation of the valuable minerals from the gangue is almost 
exclusively performed using flotation cells aligned in rows. In each row the tails (underflow) of a cell feed 
the next one down the row. These flotation cells may be stand alone or grouped into banks of flotation 
cells.  The latter arrangement uses a common froth depth control based on the level in the last cell in the 
bank.  In addition, this arrangement makes it difficult to obtain accurate tails samples flowing from one 
cell to the next cell in a bank.  As a result, we will treat the cells in a bank as a single entity, and for the 
purposes of this paper, the term bank will be used to refer to either a single flotation cell or a bank of 
flotation cells.  In each row the concentrate is typically collected in a common launderer for the rougher 
section and a separate common launder for the scavenger section.  Analysis of the performance of a row 
using the cumulative grade and the cumulative recovery drives one to separate the rougher section of a 
row from the scavenger section, treating each as if they were separate rows, with the feed of the scavenger 
section simply being the tails of the rougher.  Therefore, references to a row imply either a rougher section 
or a scavenger section.  A row of single cell banks is shown for clarification in Figure 1. 

 

Figure 1  A row of flotation cells 

It is of interest, of course, to investigate the performance of such a row of banks. The common quantities 
to measure performance are the cumulative recovery of valuable material and the cumulative grade of the 
concentrate. Experience shows that cross plotting cumulative grade versus cumulative recovery always 
shows curves, which are shaped much like hyperbolae. That is to say, there appears to be a maximum 
grade and a maximum recovery given the same operating conditions, constant feed grade and constant 
mass flow of the feed. It remains difficult, though, to compare performance when constant feed grade and 
constant mass flow of the feed cannot be achieved. This is so because the maximum grade of the 
concentrate is defined by the mineralogy of the feed, i.e. by the mass fraction of floatable valuable material 
therein. Likewise, the maximum recovery is, amongst others, defined by the volumetric flow rate of the 
feed as this determines, given constant volume of the cells, the residence time in each cell. The liberation 
size and particle size distribution of the feed also has an impact on the recovery, grade or both. 

We will present a normalization procedure by which the raw cumulative grade and raw cumulative 
recovery data can be brought into a common form that will enable easy comparison of bank performance 
in a row. The common, normalized form is unbiased as it removes the influence of variations of 
mineralogy and mass flow of the feed. 

The normalization procedure assumes that the shape of the cumulative grade versus cumulative recovery 



 

 

curves resemble hyperbolae with grade asymptotic maxima and recovery asymptotic maxima. We present 
a reduction procedure by which the normalized grade recovery curves collapse into one common shape 
independent of both the variations in feed and any variations in row performance or row operating 
conditions. This reduced form can be used to gauge the assumption made. 

The theoretical underpinning of the normalization and reduction procedure rests on the evaluation of 
inequalities of the partial sums by which cumulative recovery and cumulative grade are defined. This can 
be done without making any assumptions about the single cell performance. The only requirement is that 
each bank cannot produce a grade higher than a certain maximum and that each bank cannot recover 
more than a certain maximum. These two assumptions are enough to explain and prove an 
experimentally observed characteristic of cumulative grade versus cumulative recovery curves; the 
cumulative recovery increases down a row with increasing bank number but cumulative grade does not. 

Single bank recovery and grade equations  

In a paper by Neethling and Cilliers (2012), equations for single cell performance were derived that have 
closed form solutions for grade and mass pull. These equations can be reworked easily into closed form 
solutions for grade and recovery. The equation for grade is simply a function of the tails grade: 
 (1) 

Where GC is the grade of the concentrate, GT is the grade of the tails of this cell, b is a constant dependent 
on the cell operating parameters. Gnf is the grade of the non-floatable valuable material and Gf is the grade 
of the floatable material. Gnf encompasses material that will not float due to particle size, liberation class, 
or chemical composition.  It is easy to show that the maximum value that the grade of the concentrate can 
assume equals Gf whereas the minimum is Gnf. For the recovery we find: 
 (2) 

Where a is a constant dependent on the mass feed and GF is the feed grade of this cell incorporating both 
the floatable feed grade, Gf, and the non-floatable feed grade, Gnf. The recovery likewise has an upper and 
a lower bound. The maximum recovery is obtained when the tails grade equals the grade of the non-
floatable material: 
 (3) 

The derivation of the above formula for the purpose of this paper is not important. All that matters 
is that for single cell or bank behaviour there are upper bounds to both the grade and the recovery. 

)()(
)()(

nfmfnfT

nffTnfTf
C GGbGG

GGbGGGG
G

−+−

−+−
=












−

−
++








−=

nff

nfT

F

T

F

T

GG
GG

ba
G
G

G
GR 1

ab
G
G

G
G

R
F

nf

F

nf +







−= 1max



 

 

METHODOLOGY 

Cumulative grade cumulative recovery curves  

A plot of the cumulative grade down the banks in a row of flotation cells versus the cumulative recovery 
often shows a characteristic shape that resembles the shape of a hyperbola. The cumulative grade drops 
sharply as the cumulative recovery increases to what appears to be a limit. Conversely when the 
cumulative recovery decreases the cumulative grade increases slowly but also appears to possess an 
upper bound. If the shape of the cumulative grade versus cumulative recovery curve is indeed a 
hyperbola then the upper bounds of the cumulative grade and cumulative recovery are the asymptotes of 
a hyperbola. The theory presented here does not make any assumptions about the single cell grade or 
single cell recovery other than that both single cell grade and single cell recovery possess an upper bound. 

Cumulative recovery sum and inequalities 

We define the cumulative recovery RΣ(n) as per the cumulative sum of the mass flow of target mineral or 
element recovered in the launder or concentrate from individual banks 1 to N in a row of N banks over the 
total mass flow of target mineral or element in the feed: 
 (4) 

Where m is the mass flow of solids, G is grade, the subscript Ci denotes the concentrate of bank i and the 
subscript F denotes the row feed. The recovery of a single bank Ri is similarly defined as: 
 (5) 

Where the denominator is the mass feed m and grade G into the bank number i. By combination of the 
above two equations, we find that cumulative recovery is a weighted sum over the individual grades as 
per the equation below. 
 (6) 

If we now realize that the feed to each bank must be smaller than or equal to the feed to the first bank and 
equivalently the grade of the feed to each bank is smaller than or equal to the feed grade, we can derive an 
inequality for the cumulative recovery: 
 (7) 

Where R̂  is the maximum recovery attainable in a single bank. Thus an absolute maximum to the 
cumulative recovery is given by the above equation as: 
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 (8) 

Thus the intuitive notion that cumulative recovery increases with bank number is substantiated by the 
above inequality. The cumulative recovery of n banks is always smaller than the cumulative recovery of 
(n+1) banks. Cumulative recovery is thus a monotonically increasing function of the bank number. 

Cumulative grade sum and inequalities  

We define the cumulative grade GΣ as the cumulative weighted sum over the grades of each individual 
bank numbered i: 

 
 (9) 

In this equation the GCi is the grade of the concentrate in bank i. MΣ is the cumulative mass flow in the 

concentrate. Let Ĝ  be the maximum attainable grade in a single bank, then the following inequality 
holds: 
 (10) 

 

Thus, an absolute maximum of the cumulative grade is given by: 
 (11) 

This proves that cumulative grade is independent of the bank number. The cumulative grade can at best 

be equal to the maximum grade Ĝ  of a single bank, but, unlike the cumulative recovery, it can never be 
larger. 

Relations between cumulative grade and cumulative recovery 

From the above sums it is easy to derive that the cumulative grade and cumulative recovery are related: 
 (12) 

We will now investigate if the product of the cumulative recovery minus the maximum recovery and the 
cumulative grade minus the maximum grade can be formed such that this product is independent of the 
cumulative grade and cumulative recovery. That is to say we form the product: 
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 (13) 

Where Χ is the constant sought. If Χ is independent of both the cumulative grade and the cumulative 
recovery, then this equation expresses that the cumulative grade versus cumulative recovery curve is a 

rectangular hyperbola with asymptotes Rmax = RN ˆ  and Gmax = Ĝ . 

The distinction between a rectangular hyperbola and a normal hyperbola is important. A rectangular 
hyperbola has asymptotes that are orthogonal to each other. The right hand side of the equation of a 
hyperbola is then factorable into a product. 

Substitute equation (12) into the hyperbola in equation (13) and expand the product will produce: 
 (14) 

The left hand side of equation (14) must be factorable into a product. In other words the left hand side 
polynomial of degree 2 must have a single root of multiplicity 2. This is only possible when the 
discriminant D of the polynomial is zero: 
 (15) 

which after expanding and simplifying results into an equation for the cumulative mass flow of the 
concentrate: 
 (16) 

This would imply that given a constant feed grade and feed mass flow, the mass flow in the concentrate is 
a constant. Obviously, this is a result of the inequality in equation (8). Reformulation of the latter in terms 
of a local maximum by using the actual bank number n gives an equation for the mass flow of the 
concentrate that is not constant and increases with the bank number n. 

Back-substitution into equation (12) then gives a simple equality of proportions for the recovery and the 
grade: 
 (17) 

It must be stressed that the above two equalities in equation (16) and equation (17) are valid only because 
of the assumption made that the cumulative grade versus cumulative recovery curve is a hyperbola. This 
follows easily from the substation of the definition of the cumulative recovery in (15). 

Note that the inequality in equation (8) is an absolute maximum valid for all bank numbers n and 
expressed in the maximum bank number N. This inequality may be reformulated with the help of 
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equation (7). The inequality would then be formulated in terms of the actual bank number n. All of the 
results derived above remain valid when the maximum bank number N is replaced by the actual bank 
number n. 

RESULTS AND DISCUSSION 

In a paper by Neethling and Cilliers (2012), five sets of cumulative grade versus cumulative recovery are 
presented in the form of a graph. By digitizing this graph the coordinates of the cumulative grade and 
cumulative recovery points can be retrieved. The results of the digitizing are given in Table 1. The five 
different curves are labelled by the letters A to E. For reference the original symbols used in the graph of 
Neethling and Cilliers are given in the bottom row of the table. 

Table 1  Digitized data points 

Bank A B C D E 
n RΣ(n) GΣ(n) RΣ(n) GΣ(n) RΣ(n) GΣ(n) RΣ(n) GΣ(n) RΣ(n) GΣ(n) 
1 0.495 0.341 0.543 0.288 0.592 0.331 0.568 0.305 0.626 0.332 
2 0.672 0.341 0.665 0.289 0.734 0.332 0.637 0.306 0.722 0.333 
3 0.717 0.338 0.755 0.287 0.781 0.319 0.752 0.288 0.783 0.333 
4 0.763 0.337 0.817 0.287 0.823 0.319 0.814 0.289 0.829 0.331 
5 0.833 0.333 0.833 0.287 0.828 0.318 0.840 0.287 0.850 0.327 
6 0.855 0.331 0.860 0.281 0.851 0.315 0.855 0.286 0.861 0.326 
7 0.876 0.327 0.877 0.274 0.865 0.312 0.858 0.284 0.885 0.314 
8 0.880 0.323   0.881 0.302 0.875 0.270 0.890 0.310 
 Closed squares Open squares Circles Diamonds Triangles 

Raw cumulative grade cumulative recovery curves 

By cross plotting the five sets of cumulative grade versus cumulative recovery in Table 1, we observe the 
typical shape of such curves with a monotonically increasing recovery towards an upper bound and a 
maximum grade. 



 

 

 

Figure 2  Grade recovery curve and curve fits 

Normalized cumulative grade versus cumulative recovery curves. 

The cumulative grade versus cumulative recovery curves of Neethling and Cilliers were fitted to a 
hyperbola with asymptotes A and B and constant C as follows: 
 (18) 

The fitted hyperbolas are shown in Figure 2 as dotted lines in the same color as the experimental data. 

The result of the fit is given as the values of a, b and c where a is interpreted as the maximum attainable 
recovery Rmax, b is interpreted as the maximum attainable grade Gmax and c is interpreted as the 
performance coefficient Χ. Replotting the data from Neethling and Cilliers in terms of normalized grade 
(G – Gmax) and normalized recovery (R - Rmax) then produces a graph as in Figure 3, where all the 
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cumulative grade and cumulative recovery curves share common asymptotes. 

 

Figure 3  Normalized grade recovery curves 

Observe the re-ordering in the curves. Whereas in Figure 2 A is the upper most one in Figure 3, after 
bringing all curves into a form with common asymptotes, B is now on top. Observe too that the C and D 
curves are now shown to be one and the same as is indicated by the fact that their fitted hyperbolae 
overlay. 

Independent of the operating conditions of the cells in a bank of a row the maximum grade is determined 
by the mineralogy of the solids feed, i.e. the grade of the floatable material. Likewise, independent of the 
operating conditions of the cells in a bank of a row the maximum recovery is determined by the mass feed 
of solids. Thus, the normalization of the cumulative grade and cumulative recovery curves now shows the 
performance of the banks in a row independent of variations in the feed. Both any variation in mineralogy 
and variation in mass flow are eliminated. The normalized curves thus show, unbiased by uncontrollable 
parameters, the comparison in performance of the banks. The closer the normalized grade versus 
normalized recovery curve is to the asymptotes, the better the performance of the banks of cells in a row 



 

 

as this will ensure a high grade up to almost the maximum attainable recovery. In mathematical terms this 
means that the hyperbola’s constant c, which equals the performance constant Χ, is small. 

Reduced cumulative grade versus cumulative recovery curve 

Reduction of the normalized grade and normalized recovery by the square root of the performance 
constant then leads to a uniform expression that is valid for all curves: 
 (19) 

Since this equation equal a universal constant (“1”) all the curves collapse to the same curve as is shown in 
Figure 4. 

 

Figure 4  Reduced grade recovery curves 

The reduced grade versus reduced recovery curve in Figure 4 shows to what extent the individual data 
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points support the notion of a hyperbolic relation between grade and recovery. Observe how all the fitted 
hyperbolae now collapse to only one curve, whereas the experimental data points show some scatter 
around this universal curve. The scatter is inevitable given the nature of the experimental data. As is 
natural for accumulated data there is less scatter with increasing bank number i.e. with increasing 
reduced recovery. 

The final result of the fitting are the individual fit parameters a = Rmax, b = Gmax and c = Χ. These values have 
been compiled, along with their respective standard errors in Table 2. Indeed the experiment B, the green 
curve which tops the others in the normalized version of the cumulative grade versus cumulative 
recovery curves shows the lowest value of the performance coefficient, and hence the best performance 

Table 2  Results, asymptotes and performance coefficient 

Experiment Rmax Gmax Χ 
 Fitted StdError Fitted StdError Fitted StdError 
A 0.932 0.017 0.344 0.002 0.0010 0.0004 
B 0.892 0.006 0.290 0.001 0.0002 0.0001 
C 0.949 0.038 0.338 0.006 0.0024 0.0016 
D 0.941 0.056 0.310 0.008 0.0024 0.0023 
E 0.907 0.005 0.335 0.001 0.0005 0.0001 

Using the values of the maximum grade and the maximum recovery as per the individual fitted 
hyperbolae to each set of experimental data we may now evaluate the equality of ratios of grade and 
recovery as per equation (17). The cumulative mass flow in the concentrate, or cumulative mass pull, 
when normalized by the mass flow in the feed and the feed grade can be calculated as well with the help 
of equation (16). The results are compiled in Table 3. 

Table 3  Grade recovery ratios and cumulative mass pull 

Experiment RΣ(N)/Rmax GΣ(N)/Gmax MΣ(N)/mFGF StdError 
A 0.944 0.939 2.711 0.051 
B 0.983 0.947 3.079 0.022 
C 0.928 0.893 2.805 0.123 
D 0.930 0.872 3.038 0.198 
E 0.981 0.926 2.707 0.016 

Perhaps not surprisingly it follows that the experiment B, which has the best performance in terms of the 
normalized cumulative grade versus normalized cumulative recovery curve, also shows the highest 
normalized cumulative mass pull. One might expect then that the experiment E would be second but this 
is not the case. Experiment D has a higher cumulative mass pull albeit with a large standard error. 

The recovery and grade ratios should be equal according to equation (17) which follows from a mass 
balance equation inserted into the postulated hyperbolic shape of the cumulative grade versus cumulative 



 

 

recovery curve. The columns in Table 3 indicate to which extent this is supported by the experimental 
data. 

CONCLUSION 

By evaluation of inequalities of partial sums for cumulative grade and cumulative recovery, what is 
known in the industry is mathematically proven that: 1) Cumulative recovery increases with bank 
number. 2) Cumulative grade is independent of bank number. 

The existence of a maximum cumulative grade and a maximum cumulative recovery combined with the 
experimentally observed shape of cumulative grade cumulative recovery curves leads us to postulate that 
such curves can be well described by rectangular hyperbolae. 

Assuming that the cumulative grade-recovery curves are indeed rectangular hyperbolae, it is possible to 
derive an equation for the cumulative mass flow in the concentrate. Additionally, a simple equality of 
ratios for the cumulative grade and cumulative recovery can be derived. 

Five sets of cumulative grade cumulative recovery data as published in the literature were digitized and 
fitted to hyperbolae. The fitting results in the values of the asymptotes were used to normalize the raw 
cumulative grade and raw cumulative grade curves. The normalized curves allow an unbiased 
performance evaluation of the row of banks with the performance factor, Χ, proving a metric for row 
performance.  

Further reduction of the normalized cumulative grade versus normalized cumulative recovery curves 
collapses all five sets to one and the same common curve. The extent to which the data points indeed fall 
onto this single hyperbola can be used to gauge the validity of the assumptions made. 

The normalized cumulative mass pull can be calculated based on the fitted values of the maximum 
recovery and maximum grade. This may serve as an alternative evaluation of row performance.  
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